- Che 31. Introduction To Chemical Engineering Announcements Notes
- Che 31. Introduction To Chemical Engineering Announcements 2020
Brief description of Chemical Engineering Courses
A- Core Courses
ChE 317 - Introduction to Chemical Engineering Analysis Instructor: Dr. Bruce Eldridge CPE 4.408 rbeldr@che.utexas.edu 471-7067 PRC, 232-1407 CPE Office Hours: Tu/Th 3:00 – 5:00 or by appointment Teaching Assistants: Bailee Roach / Wissam Charab Grader: Lindsey Rey Tutor: Mickey Phan Class Hours: MWF 8:00 pm - 9:00 pm CPE 2.216. ChE 124 2 Chem 154, Chem 28, Chem 28.1, Chem 31.1 0 6 Chemical Engineering Thermodynamics Laboratory ChE 126 3 ChE 125, ChE 131 3 0 Chemical Reaction Engineering II ChE 135 2 ChE 133, ChE 134, ChE 125 0 6 Process Engineering Laboratory ChE 140 3 ChE 125, ChE 132, ChE 133, ChE 134 2 3 Chemical Process Industries ChE 150 3 Chem 31, ChE 125, ChE. Chemical process industries i introduction and chloro- alkali industries click here to download: chemical process industries i sulphur and sulphuric acid industries click here to download: chemical process industries i silicate industries click here to download: chemical process industries i nitrogen and phosporus industries.
CHE 201: Chemical Engineering Principles – I 3(3,1,0)
Origin and role of Chemical Engineering, Engineering Calculations, Processes and process variables. Material balances in single unit & multiple units for non-reactive and reactive processes including combustion reactions.
Jun 16 (W) - Last day for late registration Aug 06 (F) - Last day for dropping of subjects without evaluation Aug 09 (M) - CHE 31 Mid-Term Exam (6 - 9 PM) Sep 03 (F) - Last day for dropping of. Introduction to Chemical Engineering Processes/Print Version From Wikibooks, the open-content textbooks collection Contents hide. 1 Chapter 1: Prerequisites o 1.1 Consistency of units 1.1.1 Units of Common Physical Properties 1.1.2 SI (kg-m-s) System 1.1.2.1 Derived units from the SI system 1.1.3 CGS (cm-g-s) system.
Textbook: Felder R. M. and Rousseau, R. W. “Elementary Principles of Chemical Processes” John Wiley & Sons.
Pre-requisite: CHE 101
CHE 202: Chemical Engineering Principles - II 2(2,1,0)
Energy forms and energy balances and thermodynamic principles. Balances on non-reactive processes Balances on reactive processes including fuels and combustion. Solution of simultaneous material and energy balance equations for process flow sheets using suitable softwares (computer laboratory).
Textbook: Felder R. M. and Rousseau, R. W. “Elementary Principles of Chemical Processes” John Wiley & Sons.
Pre-requisite: CHE 201, CO-requisite: CHEM 230
CHE 205: Chemical Engineering Thermodynamics I 2(2,1,0)
The scope of thermodynamics. Internal energy. Thermodynamics state and state function. Volumetric Properties of Pure Fluids. Heat Effects. Statements of the second law, and the concept of entropy. Power Cycles. Refrigeration and Liquefaction.
Textbook: Smith, J.M.; Van Ness, H.C.; and Abbott, M.M. “Introduction to Chemical Engineering Thermodynamics”, 6th ed. McGraw Hill, 2001.
Pre-requisite: CHE 201, CHEM 230
CHE 206: Chemical Engineering Thermodynamics II 2(2,1,0)
Thermodynamics properties of fluids. Thermodynamics properties of homogenous mixtures Phase equilibria. Chemical reaction equilibria.
Textbook: Smith, J.M.; Van Ness, H.C.; and Abbott, M.M. “Introduction to Chemical Engineering Thermodynamics”, 6th ed. McGraw Hill, 2001.
Pre-requisite: CHE 205
CHE 310: Unit Operations 3(2,1,2)
Properties, Handling, and Mixing of Particulate Solids. Mechanical Size Reduction. Flow Past Immersed Bodies. Mechanical-Physical Separation I. Mechanical-Physical Separation II. Separation based on the motion of particles through fluids. Relevant experiments (Solid Handling, Filtration).
Textbook: W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 6th ed., McGraw-Hill, Inc., New York, 2001.
Pre-requisite: CHE 201
CHE 315: Momentum Transport Operations 3(2,1,2)
Fluid statics. Fluid Dynamics. Flow around submerged bodies. Flow through porous media. Flow in Fluidized beds. Flow metering devices. Pumps and Fluid moving machinery. Non-Newtonian fluids. Dimensional analysis. Piping design. Relevant experiments (Friction losses in Pipes and Fittings, Pump Performance).
Textbook: Geankoplis, G.J: Transport Processes and Unit Operations, Allyn and Bacon, 4th edition.
Pre-requisite: CHE 202
CHE 317: Energy Transport Operations 3(2,1,2)
Introduction and mechanisms of heat transfer. Steady state heat transfer by conduction. Individual coefficients of heat transfer. Heat Transfer correlation in convection. Natural convection & Radiation. Heat transfer with change equipment design. Application to heat exchange equipment design. Relevant experiments (Thermal Conductivity, Double Pipe Heat Exchanger).
Textbook: 1- Geankoplis, G.J: Transport Processes and Unit Operations, Allyn and Bacon, fourth edition; F. Kreith
2- M.S Bohn,”Principle of Heat Transfer “ , PWS Pub. company, 5th ed., Boston, 1997.
Pre-requisite: CHE 202
CHE 318: Mass Transport Operations 4(3,1,2)
Principles of Mass Transfer. Principles of Convective Mass Transfer. Convective mass transfer coefficients. Stage and Continuous Gas-Liquid Separation Processes with emphasis on absorption and humidification. Relevant experiments ( Packed Column, Humidification, Drying).
Textbook: 1-Geankoplis ,G.J.: Transport processes and Unit Operation , Alyn and Bacon. 2- Treyball ,R.E. “ Mass transfer operations “ . Mc Graw Hill ,NY 1980
Pre-requisite: CHE 315
CHE 319: Principles of Materials Engineering 3(2,1,2)
Introduction to materials science. Atomic structure of materials. Classification of materials. Crystalline structure of materials. Imperfection in crystalline materials. Materials and their properties. Phase diagrams of solid materials. Materials deterioration and failure. At least two sessions of laboratory experiments. Relevant experiments (1. Hardness Testing, Tensile Properties, Impact Toughness).
Textbook: William D. Callister. “Materials Science and Engineering an introduction” John Wiley & Sons, 6th ed. 2003
Pre-requisite: CHEM 101
CHE 320: Chemical Reaction Engineering 3(3,1,0)
Mole Balances. Conversion and reactor sizing. Rate laws and stoichiometry: Basic definitions, Stoichiometric table, Expressing concentrations in terms other than conversion. Isothermal reactor design. Collection and analysis of rate data. Multiple reactions. Steady-state nonisothermal reactor design. Introductory heterogeneous catalytic reactions and reactors. Relevant experiments (Batch Reactor, Continuous Stirred Tank Reactor).
Textbook: H Scott Fogler, Elements of Chemical Reaction Engineering, 4th ed
Pre-requisite: CHE 206
CHE 406: Computational Techniques 2(1,1,2)
General Process Modelling. Modeling examples of lumped parameter and distributed parameter systems. Solution of the system of linear algebraic equations. Solution of nonlinear algebraic equations. Solution of ordinary differential equations – IVPs & BVPs. Introduction to optimization methods – single variable and multi variable optimization, linear programming technique. Relevant computer laboratory.
Textbook: J. B. Riggs, An Introduction to Numerical Methods for Chemical Engineers, 2nd Edition, Texas Tech University Press, 1994.
Pre-requisite: MATH 204
CHE 407: Separation Processes 4(3,1,2)
Phase Equilibrium relations and phase diagrams. Fundamentals of stage operations. The equilibrium stage. Graphical and analytical stage determination. Differential versus staged contactors. Application of equilibrium stage analysis to: Distillation, Liquid-liquid Extraction and leaching, Absorption. Relevant experiments (Distillation, Extraction).
Textbook(s): 1. Geankoplis, C.J., “Transport Processes and Unit operations” 3rd ed., Prentice-Hall, Inc, Edgewood Cliffs, N.J.,1993.
2- Coulson, J.M. , Richardson, J.F., Backhurst, J.R and Harker, J.H. “Chemical Engineering vol.2” , 4th Edition, Pergamon Press, Oxford, U.K, 1991.
Pre-requisite: CHE 318
CHE 412: Computer Aided Chemical Process Design 3(2,1,2)
Hand on process simulators e.g. HYSYS, ASPEN PLUS, CHEM CAD, SuperPro. Principles of process design. Heuristics and algorithmic methods for process synthesis. Heat and power integration. Equipment sizing. Optimization. of process flowsheets. Analysis of process safety and environmental cleanness. Relevant computer laboratory.
Textbook: Process Design Principles, D. Seider, J. D. Seader and D. R. Lewin, John Wiley & Sons, Inc., New York, 1999.
Pre-requisite: CHE 318
CHE 414: Process Control 3(2,1,2)
Apply fundamental laws (momentum transport, heat and mass transfer, reaction engineering) to develop dynamic models for simple chemical systems. Examine the dynamics of simple chemical systems. Understand the process control structure. Design the classical PID control for single-input-single-output systems. Analyze the performance and stability of the controlled systems. Relevant experiments (Open-Loop Dynamic of Two Interacting Tanks, Open-Loop Dynamics of Temperature Sensors, Open-Loop Dynamic of Three Stirred Tanks, Determination of PID Settings for Level Control System, Level Control with Outflow, Temperature Control System).
Textbook: Thomas E. Marlin, Process Control – Designing Processes and Control Systems for Dynamic Performance, 2nd Edition, McGraw Hill, 2000.
Pre-requisite: CHE 406
CHE 418: Chemical Plant Economics 3(2,1,2)
Introduction to chemical Engineering economics. Process design development. General design considerations. Cost estimation. Depreciation. Profitability, alternative investments, and replacements. Optimum design and design strategy. Relevant computer laboratory.
Textbook: M.S. Peters, K.D. Timmerhaus and R.E. West, ”Plant Design and Economics for Chemical Engineers”, 5th Edition, McGraw – Hill, 2003.
Pre-requisite: GE 403
B- Seniors' Design Projects Requirements
CHE 496: Graduation Project -1 2(2,0,0)
This course is aimed at providing the students with the opportunity to unify all their previous courses or utilize it into one project by designing a chemical process and presenting a formal report.
Pre-requisite: Successful completion of 131 cr. Hr
CHE 497: Graduation Project -2 2(2,0,0)
This course is the second part of final year project (CHE 496)
Pre-requisite: CHE 496
C- Foundation Chemistry Courses
CHEM 230: Principles of Physical Chemistry 3(3,0,0)
Molecular kinetic theory of gases, first law of thermodynamics, thermo chemistry, second and third laws of thermodynamics, free energies, adsorption and heterogeneous catalysis.
CHEM 244: Principles of Organic Chemistry (1) 2(2,0,0)
Aliphatic Hydrocarbons: Structure, nomenclature, stereochemistry (confirmation of alkane, stereochemistry of cycloalkanes and alkenes (Z, E), synthesis and reactions.
Aromatic Hydrocarbons: Benzene, aromaticity, nomenclature, reactions (activation and orientation), polynuclear urenes. Alkyl halides, nomenclature, synthesis and reactions, optical isomerism (SN1, SN2 reactions)
CHEM 245: Principles of Organic Chemistry (2) 2(2,0,0)
Classification, nomenclature, physical properties, synthesis and reactions of the following organic classes: Alcohols, ethers, phenols, aldehydes, ketones, carboxylic (and their derivatives) and amines .
Pre-requisite: CHEM 244
CHEM 350: Instrumental Analysis for non-major 4(2,0,4)
Principles and applications of spectrophotometric and Electro-analytical methods in the determinations of Organic and Inorganic samples
D- Elective Modules
Each student is required to select three courses (9 hrs) from one of the following 5 modules:
D-1 Petroleum & Petrochemical Industries module
CHE 441:Petroleum Refining Engineering 3(3,1,0)
Characterization and evaluation of crude petroleum. Application of chemical engineering to the oil industry. Refining techniques, physical separation, chemical conversion and treating processes. Design and costing of refinery equipment. Product testing and specifications. Environmental issues
CHE 443 Natural Gas Processing 3(3,1,0)
Overview of natural gas. Gas treatment – Gas dehydration – Hydrocarbons recovery – Nitrogen removal - Trace-component recovery and removal – Liquids processing – Sulfur recovery – Transportation and storage.
CHE 426: Heterogeneous Reactor Engineering 3(3,1,0)
Application of the chemical kinetics of heterogeneous reactions to the design of chemical reactors, Catalysis and catalytic reactors, Heterogeneous data analysis for reactor design, Catalyst deactivation , External diffusion effects on heterogeneous reactions, Diffusion and reaction in porous catalyst.
CHE 422: Selected Topics in Chemical Engineering (1) 3(3,1,0)
This course involves a variety of selected topics in chemical engineering. The contents of course depend on the instructor specialization and/or students' needs and/or contemporary issues.
Prerequisite: CHE 318
D-2 Desalination and Water Treatment Module
CHE 413: Desalination and Water Treatment 3(3,1,0)
Study of the scientific, technical as well as economical aspects of desalination of seawater and brackish water with special reference to local conditions. Recovery of minerals as by-products. Solar energy utilization
CHE 437 Waste Treatment Processes 3(3,1,0)
Identify the sources and characteristics of liquid waste streams and waste treatment process design, Wastewater Characteristics, Analysis and composition, Treatment Physical, biological and membrane Treatment. Regulations.
CHE 438 : Water Chemistry and Chemical Analysis 3(3,1,0)
Basic concepts of water properties and chemistry needed for water and desalination processes. Basic Principles:, Major aquatic chemical processes, Analytical data required for desalination applications, Principles of disinfection, Oxidation – reduction reactions in water.
CHE 422: Selected Topics in Chemical Engineering (1) 3(3,1,0)
This course involves a variety of selected topics in chemical engineering. The contents of course depend on the instructor specialization and/or students‘ needs and/or contemporary issues.
Prerequisite: CHE 318
D-3 Materials Science and Engineering Module
Che 31. Introduction To Chemical Engineering Announcements Notes
CHE 430: Corrosion Engineering 3(3,1,0)
Corrosion engineering definition & importance, Classification & Nature of corrosion processes, Corrosion in selected environments, Corrosion testing and monitoring, Corrosion prevention and control.
CHE 433: Electrochemical Engineering 3(3,1,0)
Fundamentals of electrochemical engineering, Electrochemical cells, Thermodynamics and kinetics of electrochemical systems, Economics of electrochemical processes, Selected applications of electrochemical engineering.
CHE 434 : Extractive Metallurgy and Metals Recycling 3(3,1,0)
Basic concepts of extractive metallurgy. Calcinations, Flotation, Roasting, Pyrometallurgy, Hydrometallurgy, Electrometallurgy. Basic processes for metals recycling. Application to selected cases
CHE 422: Selected Topics in Chemical Engineering (1) 3(3,1,0)
This course involves a variety of selected topics in chemical engineering. The contents of course depend on the instructor specialization and/or students‘ needs and/or contemporary issues.
Prerequisite: CHE 318
D-4 Chemical Industries module
CHE 427: Pollution Prevention in Chemical Industries 3(3,1,0)
Study of methods of pollution prevention using traditional and modern approaches. Wastewater treatment Air pollution and its Effects, Process Integration, Training in using linear programming and mixed integer non linear programming software (MINLP) software in process integration.
CHE 428 Production of Building and Cementing Materials 3(3,1,0)
Study of the process and operations involved in production of Building and Cementing Materials. Classification of cements. Bricks and Insulating materials, Glasses. Manufacture of glass. Overview for the usage of Polymers. Adhesives. Case study. Field trip.
CHE 429: Energy and Chemical Industries 3(3,1,0)
Study of the types and sources of fuels. Optimization of energy consumption in chemical industries. Classification and manufacturing of fuels, Renewable energy sources, Energy and the environment.
CHE 422: Selected Topics in Chemical Engineering (1) 3(3,1,0)
This course involves a variety of selected topics in chemical engineering. The contents of course depends on the instructor specialization and/or students‘ needs and/or contemporary issues.
Prerequisite: CHE 318
Che 31. Introduction To Chemical Engineering Announcements 2020
D-5 Biochemical Engineering Module
CHE 440 Introduction to Biochemical Engineering 3(3,1,0)
Provide the students with the fundamental background knowledge in the area of Biochemical Engineering which involves the application of Chemical Engineering principles and approaches to biologically-based systems and processes. Elements of applied microbiology: Enzyme & Fermentation kinetics, Bioreactor design, scale-up and scale-down, Down stream processing.
CHE 445 Biological Wastewater Treatment 3(3,1,0)
Introduce the students to fundamentals of biochemical operations in waste water treatment, stoichiometry and kinetics of biochemical operations, applications to analysis and design of suspended growth reactors and attached growth reactors.
CHE 446 Environmental Biotechnology 3(3,1,0)
Provide the students with the fundamental background knowledge in the area of Environmental Biotechnology. Students should be able to understand the role of microorganisms in processes such as biofilm formation, biocorrosion, mineral leaching, composting, bioremediation and production of a fine chemical from a renewable resource and to understand how to manipulate environmental conditions to enhance or retard a given process.
CHE 422: Selected Topics in Chemical Engineering (1) 3(3,1,0)
This course involves a variety of selected topics in chemical engineering. The contents of course depend on the instructor specialization and/or students' needs and/or contemporary issues.
Prerequisite: CHE 318
The Chemical Engineering program is structured to provide the necessary background in mathematics and basic sciences (chemistry, physics and biology) with the intent of preparing graduates for the 21st Century. It includes a general education component consistent with the college and university requirements for the Bachelor of Science degree. The logic that underlies the sequence of the courses in each of these areas and the program educational objectives are described below. As part of the program, students must follow a strict policy of academic integrity.
The program’s educational objectives are to produce graduates who will have the ability to attain high levels of technical expertise to enable their achievement in diverse chemical engineering practice and research, or in allied careers, prepare them for graduate level education, and enable them to be successful members of the professional community.
- General Education
A major goal of engineering is to contribute to the welfare of society. This contribution is best made when students have a broad understanding of the Humanities and the Social Sciences (HMNSS). This understanding is derived from the study of world history; political and economic systems; the ethnic, cultural, and religious diversity of the peoples of the earth; the arts and letters of all cultures; the social and natural sciences; and technology. Although not a formal part of the required HMNSS course of study for engineering majors, this understanding is strengthened by a stringent requirement in written communication (ENGL 1A, 1B, 1C).
The requirements in the Humanities consist of a minimum of three courses: one course in World History; one from Fine Arts, Literature, Philosophy, or Religious Studies; and one additional Humanities course. Breadth requirements in the Social Sciences are similarly structured: one course from either Economics or Political Science; one course from Anthropology, Psychology, or Sociology; and one additional Social Science course.
In addition, the campus breadth requirement in Ethnic Studies has the option of being incorporated into the above, or standing alone as an additional course. For depth, at least two Humanities or Social Science courses must be completed at the upper-division level and, at least two courses must be from the same subject area (for example, two courses in History), with at least one of them being an upper-division course.
- Mathematics and Basic Sciences
The environmental engineering curriculum is built on a foundation of courses in mathematics and the basic sciences, which are taken in the first two years at the university. The basic sciences and mathematics courses that were selected emphasize concepts and principles. Students acquire a strong grounding in Physics through PHYS 40A, 40B and 40C. Each of these courses includes an extensive laboratory component. At the same time, students take a variety of basic sciences courses or introductory engineering courses that will provide them with the breadth necessary to solve multidisciplinary problems. These include Programming (CS 10), Cell Biology (BIO 5A), for all students, and selected biochemistry and biology courses for students following the biochemical engineering and bioengineering options.
The chemical engineering curriculum is also based on solid grounds of chemistry. General chemistry education starts with the CHEM 1A, 1B and 1C series which include laboratories. The students then acquire theoretical and laboratory experience in organic chemistry (CHEM 8A, 8B and 8C), which are the same courses taken by chemistry majors.
During the first two years, students take five courses in mathematics that cover multivariable differential and integral calculus. These courses, MATH 9A, 9B, 9C and 10A and 10B, are followed by a course in ordinary differential equations, MATH 46. The basic mathematics knowledge will be later complemented with engineering mathematics and statistics in ENGR 118.
- Engineering Science
Most of the courses in engineering sciences are taken after the student has acquired the necessary foundation in mathematics and the basic sciences. Several courses help students to become proficient in computer programming and the use of computer software. The computer knowledge acquired in CEE 10/11 (taken as freshman) and CS 10 (Introduction to Computer Science) is later reinforced in ENGR 118 (Engineering Modeling and Analysis), where students formulate computer models for engineering systems. Most courses taught in the junior and senior years incorporate computer-based problems and projects.
Engineering topics taken either in the sophomore or junior years introduce students to the fundamentals of chemical engineering. Our curriculum incorporates solid foundations in transport phenomena, thermodynamics and breadth in unit operations, kinetics and process control. The chemical engineering curriculum emphasizes principles; however, each course trains students to carry the concepts forward toward creative applications. In the fall and winter of the sophomore year (junior year for transfer), students learn basic mass and energy balances in CHE 110A and CHE 110B (Chemical Process Analysis), before learning chemical engineering kinetics (CHE 122). The curriculum then focuses on Thermodynamics (ENGR 100, CHE/ENVE 130), Transport Phenomena (CHE 114 Fluid Dynamics, CHE 120 Mass Transfer, CHE 116 Heat Transfer), and selected option specific engineering courses. In the fall quarter of the junior year, students take ENGR 118, a five-unit course that teaches engineering numerical methods, formation of engineering models and their solutions through the numerical methods.
Advanced engineering topics taken by seniors include applications of transport phenomena in Separation Processes (CHE 117), which includes computer aided process design using professional software (SuperPro Designer), and Process Control (CHE 118). In addition, the curriculum allows the student to mold his or her program of professional specialty studies by allowing each student to choose from a number of technical electives. Examples of these electives include Catalysis (CHE 102), Analytical Methods for Chemical and Environmental Engineers (CEE 125), Chemistry of Materials (CEE 135), Technology of Air Pollution Control (ENVE 134) and Green Engineering (CEE 132) for the chemical engineering option; Biochemical Engineering Principles (CHE 124) and Laboratory (CHE 124L), Cell Engineering (CHE 140) for the biochemical engineering option; Biosensors (CHE 150), Biochemical Engineering Principles (CHE 124) and a variety of upper division biology for the students following the bioengineering option.
In the senior year, Professional Development for Engineers (CEE 158) exposes students to professional ethics, risk management and environmental health and safety, regulatory issues. One of the course objectives is to prepare students for transitioning to a successful career. The importance of lifelong learning and professional registration is emphasized.
- Laboratory Experience
As outlined in the previous section, engineering design is emphasized in each engineering course. Theoretical concepts are reinforced in laboratories.
The broad objectives of all laboratory classes are to reinforce concepts learned in lectures, provide hands-on experience in collecting data and operating engineering systems, challenge students in planning and conducting experiments, work in a team, and practice and improve technical writing and oral skills. The laboratory courses are based on the idea that students are in the best position to appreciate engineering experiments only when they have familiarity with the underlying theoretical principles. Thus, the first engineering laboratory course, CHE/ENVE 160A (Chemical and Environmental Engineering Laboratory), is offered in the Spring quarter of the junior year. This course is designed to train students in basic measurement techniques, and their application to fluid mechanics and mass transfer systems. Students perform seven out of the 10 available lab exercises on a rotating basis. CHE 160B and 160C work on a similar principle. CHE 160A is followed by CHE 160B (Chemical Engineering Laboratory), offered in the fall of the senior year, and CHE 160C, offered in the winter of the senior year. CHE 160B focuses on kinetics, reactor design and heat transfer. Students further practice physical measurements, experimental design, critical analysis of results, and preparation of engineering reports. Experimental design, critical analysis of results, and preparation of engineering reports is emphasized. When applicable, students are asked to compare their results with previously published ones, or to use their experimental data to size a unit operation, or conduct an engineering design exercise. CHE 160C deals with laboratory exercises in separation processes and in process control. Students are required to use their experimental data for scale-up purposes or for an application in engineering design.
Additional laboratory experience is acquired in CHE 124L (Biochemical Engineering Laboratory) for students following the biochemical engineering option, Analytical Methods for Chemical and Environmental Engineers (CEE 125) laboratories for students following the chemical engineering option, and advanced biology for students following the bioengineering option. Selected additional technical electives include a lab section as well.
For a majority of students, the senior design project (CHE 175A and 175B) offers another opportunity to perform laboratory work. In many cases, the design project requires students 1) to verify an assumption, 2) to determine the property of complex mixture, or 3) to construct a model system or a prototype for a proof of concept. The Department and the faculty have been supportive in terms of funding such laboratory work and the necessary resources have been made available. The process usually starts with the students analyzing their needs for laboratory work. They will then go through a decision making process for the selection of the materials, determination of the best experimental design, and development of the experimental protocol. Usually some device, equipment, or a pilot plant/reactor will be constructed. All the steps challenge the creativity of students and stimulate their analytical skills.
Further laboratory experience is often acquired by our students while conducting research with our faculty, either extracurricular activity (summer internship, or part-time research assistantship during the academic year) or for course credit through CHE 190 Special Studies. This provides one more opportunity to acquire advanced laboratory skills in emerging research areas.
- Design
Most CHE courses and labs incorporate design, which addresses real-world problems with solutions that require creativity and consideration of alternatives to achieve objectives. Most students are introduced to the concept of design in their sophomore or junior year through individual design projects, for which students are asked to design a system or a component that satisfies specified constraints.
Examples of courses that include a specific design project include, but are not limited to, Fluid Mechanics (CHE 114), Heat Transfer (ENGR 116), Engineering Modeling and Analysis (ENGR 118), Separation Processes (CHE 117) and Process Control (CHE 118). Specific design projects are based on material covered in the course. The design usually includes the following components: a) converting the design problem into quantifiable statements, b) formulating the equations that govern the design, c) developing assumptions necessary for solving the problem, and collecting the necessary information from vendors, books, publications, etc., d) selecting a method for and solving the design problem (analytically, numerically), e) critically reviewing and optimizing the design including ethical concerns and operation and maintenance considerations, and f) writing a summary report, and in select cases presenting results in front of the class.
These individual design projects prepare students for the capstone design project. The culmination of the students’ design experience is the two-quarter capstone design course, CHE/ENVE 175A and 175B, in which students draw upon various aspects of their previous engineering science and design knowledge to address a meaningful design problem. Students learn to define the objectives (in a global context), explore possible options, plan and conduct experiments if needed, formulate preliminary solutions, and evaluate proposed alternatives with respect to economics, feasibility, societal, health and safety impacts, and sustainability.
This approach may require a number of iterations before a final comparative solution is achieved. Senior design projects are always team projects (usually three students). Chemical and environmental engineering students are encouraged to form mixed groups to promote diversity and a multidisciplinary approach. CHE 175A and 175B are run in a very professional manner. Each team maintains a chronological log of project work (to demonstrate the evolution of their design), submit timesheets and bimonthly reports consisting of 10-minute oral presentations (similar to an internal review in a consulting form) and a 1-3 page technical memo.
Bimonthly oral presentations as well as an end-of-first-quarter team oral presentation (15-20 minutes) are critiqued to provide feedback for developing effective communication skills. The first quarter (CHE 175A) focuses on project (concept) analysis, preliminary evaluation (economical and technical), data and literature collection, preliminary process design and evaluation, and becoming functional in simulation software packages such as PROII and SuperPro for modeling of an entire treatment plant.
The first quarter also includes risk analysis, occupational health and safety of treatment systems, environmental and ethical concerns, sustainability concepts and operation and maintenance considerations. The second quarter (CHE 175B) of the capstone design course focuses on the detailed engineering design of the process (equipment sizing and specification, etc.), comprehensive profitability evaluation and process optimization, in addition to ethics issues in the profession. In some cases, students build a prototype of their design concepts and prove the concept by laboratory experiments and obtain the kinetics of a treatment system required for scaling up to a full-scale system using simulation software to model steady state processes.
Monitoring and assessment of ethical professional conduct are done with written and confidential self-group assessments, which are provided to the instructor and done twice each quarter. This provides students with a means to learn to work productively in teams by addressing professional and personality issues that may arise throughout the capstone design course, much like conflicts that arise in a real world setting. The course concludes with a formal oral presentation (30-40 minutes), which is evaluated by the faculty, and a comprehensive written technical report.